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We show that each of the Banach spaces C0(R) and L p(R), 2<p<�, contains
a function whose integer translates are complete. This function can also be chosen
so that one of the following additional conditions hold: (1) Its non-negative integer
translates are already complete. (2) Its integer translates form an orthonormal
system in L2(R). (3) Its integer translates form a minimal system. A similar result
holds for the corresponding Sobolev space, for certain weighted L2 spaces, and in
the multivariate setting. We also prove some results in the opposite direction.
� 1996 Academic Press, Inc.

1. INTRODUCTION

Assume that B is a natural translation invariant Banach space of func-
tions on R, such as C0(R) or L p(R), 1�p<�. Does it contain a function
. whose integer translates .n (defined as usual by .n(x)=.(x&n), x # R)
are complete; that is, their linear combinations are dense in B?

Since the Fourier transform of every such linear combination is of the
form u.̂, where u is a trigonometric polynomial with integer frequencies
and .̂ is the Fourier transform of ., a heuristic argument suggests that the
Fourier transform of every element in the closed linear span of these trans-
lates is of the form h.̂, where h is a function of period 2?, and therefore,
it will not contain any non-integer translate of .. Thus one is led to believe
that the answer to the question is negative. It is therefore somewhat sur-
prising that it is in fact positive for some of the classical Banach spaces of
functions on R, such as C0(R), L p(R), 2<p<�, the corresponding
Sobolev spaces, and some weighted L2 spaces. We prove that each of these
contains a function . whose integer translates are complete. Moreover, .
can be chosen in C0(R) & L2(R) and as the restriction to R of an entire
function of order 1, with one of the following additional properties.
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(1) The non-negative integer translates [.n , n=0, 1, . . .] are already
complete.

(2) [.n , n # Z] is an orthonormal system in L2(R).

(3) [.n , n # Z] is a minimal system, that is, non of its elements
belongs to the closed linear span of the others.

The situation for the spaces L p(R), 1�p�2, is completely different.
They contain no finite number of elements such that the linear span of their
integer translates is dense. In fact, we show in Section 4 that the same is
true for most of the Banach spaces of tempered distributions, such that the
Fourier transforms of their elements are functions.

An extensive literature is devoted to the study of completeness of all
translates of a function in L p(R) (cf. [4, 7, 13, 20, 23, 26]). It is known that
the set of all translates of a function in L p(R) & L1(R), whose Fourier
transform has no zeros, is complete in L p(R) for 1�p<� (cf. [4, 23]).
For p=1, this is the celebrated general Tauberian theorem of Wiener [26].

For some results on the completeness of translates in C0(R), we refer to
[2] and [8]. Completeness of integer translates of a function in L p(R) in
certain subspaces associated with it is studied in [11] and [12]. The closed
spans of (multi) integer translates of finitely many elements in L2(Rn) are
characterized in [6].

In Section 2, we state our main result and show that for a wide class of
Banach spaces of functions on R, including the spaces described in the first
paragraph, the existence of a function with complete integer translates can
be reduced to the existence of certain sets of uniqueness associated with the
dual space.

In Section 3, we establish the existence of such sets of uniqueness for the
duals of the above-mentioned spaces and thereby complete the proof of our
main result. This requires the construction of certain countably infinite
partitions of the interval [&?, ?], whose members are measurable sets
that satisfy appropriate conditions. The condition required to prove the
result for C0(R) and the related spaces of differentiable functions is that
every member of the partition should have intersection of positive measure
with every open interval included in [&?, ?]. The existence of such a
partition is known and elementary. The condition required to prove the
result for L p(R), 2<p<�, and the corresponding Sobolev spaces is that
every member of the partition should be a set of uniqueness for the space
of functions in L1(T) whose Fourier coefficients are in l q(Z), where q=
p( p&1)&1. Sets of this type were constructed for the first time in [15] and
[20]. Related results appear in [10] and [21]. The condition required to
prove the result for the weighted L2 spaces is of a similar nature.

In Section 4, we prove some results in the opposite direction. We show
that the integer translates of a function in L1(R) are not complete in any
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of the spaces considered in our main theorem. We also prove that every
translation invariant Banach space of tempered distributions, which is
mapped continuously by the Fourier transform into the Fre� chet space
L1

loc(R) and which contains an element whose Fourier transform is different
from zero a.e. is not the closed span of integer translates of finitely many
elements.

We deduce from this fact that none of the Banach spaces described in
our main result has a Schauder basis which consists of integer translates of
a single element.

In Section 5, we note that all our results can be extended to the multi-
variate setting and prove that the Banach space C0[0, 1] (of all functions
in C[0, 1] that vanish at 0 and 1) contains a function, such that the
sequence obtained by composing it with all iterates of the function x � x2

is complete.
This paper originated from a problem which arose in a joint research

with Gilles Cassier on the multiplicity of direct sums of unitary operators
on Banach spaces.

2. SINGLY GENERATED SPACES

In this section, we formulate our main result and present in a general setting
the functional analytic part of its proof. We begin with some notations and
definitions.

In what follows, we shall denote by C0(R) the Banach space of all con-
tinuous functions f on R such that

lim
x � \�

f (x)=0,

equipped with the maximum norm. For every non-negative integer k, we
denote by C k

0(R) the Banach space of all functions in C0(R) whose first k
derivatives are also in this space, with norm defined as the sum of maxi-
mum norms of the function and its k derivatives, and for 1�p<�, we
denote by H p, k(R) the Sobolev space of all functions in L p(R), whose first
k distributional derivatives are also in L p(R), equipped with the usual
norm (see [25, p. 323]). Thus C 0

0(R)=C0(R), and H p, 0(R)=L p(R).
We shall use the notation C �

0 (R) for ��
k=0 C k

0(R), and H 2, �(R) for
��

k=0 H 2, k(R). As will be noted in the sequel, H 2, �(R)/C �
0 (R).

We recall (cf. [17, p. 9]) that a continuous convex function M :
[0, �) � [0, �) is called an N-function, if

lim
t � 0+

M(t)
t

=0 and lim
t � �

M(t)
t

=�.
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For such a function, we shall denote by EM(C), the vector space of the
entire functions F on C such that

sup
z # C

|F(z)| exp(&M( |z| ))<�.

Following [14], we shall say that a positive function \ on R is a tempered
weight function, if there exist positive constants c and r, such that

\(x+ y)�c(1+|x| )r \( y), x, y # R.

As shown in [14, p. 34], every such function is continuous. Typical
examples of tempered weight functions are \(x)=(1+|x| ): and \(x)=
[log(1+|x| )]:, where : is a real number.

For a function f on R, and a real number y we shall denote by fy the
translation of f by y, that is, the function

fy(x)= f (x& y), x # R.

If B is a Banach space of functions on R, we shall say that it is singly
generated, if it contains a function . whose integer translates [.n , n # Z]
are complete, that is, their linear span is dense in B. Such a function will
be called a generator of B.

We are now in a position to state our main result.

Theorem 2.1. Each of the Banach spaces C k
0(R), H p, k(R), 2<p<�,

k=0, 1, ..., and L2(R, \(x) dx), where \ is a tempered weight function in
C0(R), is singly generated. Moreover, for every N-function M, each of these
spaces has a generator . which is contained in H 2, �(R), and is the restric-
tion to R of a function in EM(C), and also satisfies one of the following
conditions:

(1) The translates [.n , n=0, 1, . . .] are already complete.

(2) [.n , n # Z] is an orthonormal system in L2(R).

(3) [.n , n # Z] is a minimal system.

Remark. By taking the function M above to be

M(x)=x log(x+1), x�0,

we see that . can be chosen to be the restriction to R of an entire function
of order 1. As we shall note in Section 4, . cannot be chosen to be of finite
exponential type.

The proof of the theorem is carried out in several steps. First we establish
some general results which reduce its conclusion to the existence of certain
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measurable subsets of R, which are associated with these spaces. In order
to deal with all of them simultaneously, we have to single out a certain
class of Banach spaces.

Definition 1. If B is a Banach space of locally integrable functions on
R, and k is a non-negative integer, we shall say that B is of class Hk if it
includes the Banach space H 2, k(R) and the embedding is continuous and
dense. We shall say that B is of class H if it is of class Hk for some k.

All the spaces described in the theorem are of class H. It is clear that the
spaces L2(R, \(x) dx), where \ is a tempered weight function in C0(R), are
of class H0 . For k=0, 1, ..., and 2<p<�, the spaces C k

0(R) and H p, k(R)
are of class Hk+1. This can be seen as follows. The Fourier transform maps
the Banach space L1(R, (1+|x| )k dx) continuously into C k

0(R) (see [16,
p. 123]) and maps the Banach space L2(1+x2)k+1 dx) isometrically onto
H2, k+1(R) (see [25, Proposition 31.6]). Therefore, since by the Schwarz
inequality, L2(R, (1+x2)k+1 dx) is continuously imbedded in L1(R,
(1+|x| )k dx), we get that H2, k+1(R) is continuously imbedded in C k

0(R).
Since for p>2

C k
0(R) & H 2, k(R)/H p, k(R),

we obtain that H2, k+1(R) is also continuously imbedded in H p, k(R).
These embeddings are dense, since D(R) (the space of C� functions with
compact support on R) is dense in all of these spaces [25, Proposition
37.5]. It also follows from these inclusions that

H2, �(R)/C �
0 (R).

We establish next a useful criterion for a function in H2, k(R) to be a
generator of a given Banach space of class Hk . We make first some
preliminary observations and introduce several notations.

Assume that B is a Banach space of class Hk . Since the embedding of
H2, k(R) in B is continuous and dense, its adjoint embeds the dual space B*
continuously into the dual space of H 2, k(R), which is the Sobolev space
H2, &k(R) [25, Proposition 31.2]. We recall that H2, &k(R) consists
of all tempered distributions v, whose Fourier transform v̂ belongs to
L2(R, (1+x2)&k dx), and the norm of v is defined as the norm of v̂ in the
latter space. The duality between H2, k(R) and H2, &k(R) is implemented by
the pairing

(u, v) =
1

2? |
�

&�
û(t)v̂(&t) dt, u # H 2, k(R), v # H 2, &k(R).
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We observe that if u is in H2, k(R), and v is in H2, &k(R), then û is in
L2(R, (1+x2)k dx), and v̂ is in L2(R, (1+x2)&k dx), and therefore the
function

t � û(t)v̂(&t), t # R,

is in L1(R), so that the above integral is well defined. By the previous
observations, this formula remains true for u in B and v in B* if we denote
by ( , ) also the pairing which implements the duality between B and B*.
We shall use this fact freely in the sequel without further mention.

In what follows, we adopt the standard notations, T for the one dimen-
sional torus (identified in the usual way with the quotient group R�2?Z),
and L p(T), 1�p��, for the Banach space of 2?-periodic measurable
fucntions g on R, for which the norm

&g&Lp( T )=\ 1
2? |

?

&?
| g(t)| p dt+

1�p

is finite. For a function g in L1(T), we shall denote for every integer n, by
cn(g) its n th Fourier coefficient, i.e.,

cn(g)=
1

2? |
?

&?
g(t) e&int dt, n # Z.

For a function f in L1(R), we shall denote by Pf its 2?-periodization, that
is, the function on R defined by

Pf = :
�

j=&�

f2?j .

We recall (cf. [16, p. 128]) that this series converges absolutely a.e. on R,
represents a function in L1(T), and the relation between its Fourier coef-
ficients and the Fourier transform of f is given by

cn(Pf )=(2?)&1 f� (n), n # Z.

For a function h on R, we shall denote in the sequel by h� , the function
on R defined by

h� (x)=h(&x), x # R.

The criterion alluded to before is given by

Proposition 2.2. Let k be a non-negative integer, and assume that B is
a Banach space of class Hk . A necessary and sufficient condition for a function
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. in H2, k(R) to be a generator of B, is that the only element v in B* for
which

P(.̂~ v̂)=0

is the zero element.

Proof. Let . be in H2, k(R), and assume that B is a Banach space of
class Hk . By the Hahn�Banach theorem, a necessary and sufficient condi-
tion for . to be a generator of B is that the only element v in B* for which

(.n , v) =0, \n # Z,

is the zero element. Remembering that

.̂n(t)=e&int.̂(t), t # R, n # Z,

we obtain from the preceding observations that for every v in B* and n in Z,

(.n , v) =
1

2? |
�

&�
.̂(&t) v̂(t) eint dt=c&n(P(.̂~ v̂)).

This implies the assertion, by the unicity theorem for Fourier series. K

In order to apply the proposition in concrete cases we need to introduce
certain classes of subsets of R, which will play a central role in the sequel.

In all that follows, measurable subsets of R will be defined modulo null
sets (i.e., sets of measure zero). More precisely, we shall identify two
measurable subsets of R whose symmetric difference is a null set. Accord-
ingly, two measurable subsets whose intersection is a null set, will be
considered disjoint. Similarly, if E is a measurable subset of R, and f and
g are measurable functions on R which are equal a.e. on E, we shall say
that f =g on E. A similar convention will be adopted for inequalities
between functions.

The measure of a measurable subset E of R will be denoted by |E|.
For a subset A of R and a real number y we shall denote by A+ y the

set [x+ y, x # A].

Definition 2. A measurable subset S of R will be said to be of special
form it the sets S+2?n, n # Z, are mutually disjoint.

This definition was introduced (in equivalent form) in [12]. In this
reference, a measurable subset S/R is said to be of special form if

P/S�1,

where /S denotes as usual the characteristic function of S. It is clear that
both definitions are equivalent.
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As noted in [12], a measurable subset S/R is of special form if and
only if

S= .
n # Z

(Sn&2?n),

where Sn , n # Z, are mutually disjoint measurable subsets of [&?, ?]. It is
readily verified that these subsets are defined by

Sn=(S+2?n) & [&?, ?], n # Z.

It follows from these observations that if S is of special form, then |S|�2?,
and that |S|=2? if and only if

.
n # Z

(S+2?n)=R,

or equivalently,

P/S=1.

The other classes of sets, are associated with vector spaces of measurable
functions on R.

Definition 3. If X is a vector space of measurable functions on R, then
a measurable subset E/R will be called a set of uniqueness for X if the
only function in X that vanishes on E is the zero function.

Remark. A word of caution seems appropriate here. In view of our
conventions concerning measurable subsets, the above definition means, of
course, that E is a set of uniqueness for X, if f is X and vanishes a.e. on E,
then f vanishes a.e. on R. For example, if X is the vector space of all
continuous functions on R, or the vector space C0(R), and E is the set of
rational numbers, then every function in X that vanishes on E is the zero
function. However, E is not a set of uniqueness for X according to our
definition, since it is a null set. It is clear that in these cases, the sets of
uniqueness for X are precisely the measurable subsets of R whose intersec-
tions with every open interval have positive measure.

Before turning to the first application of Proposition 2.2, we introduce a
notation and make an observation.

If X is a vector space of tempered distributions on R, we shall denote by
FX the vector space of all Fourier transforms of elements in X.

As observed before, if B is a Banach space of class Hk , then B* is
included in H2, &k(R), so it is a vector space of tempered distributions, and
FB* is included in L2(R, (1+x2)&k dx), hence it is a vector space of
measurable functions on R (which are also locally integrable).
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Theorem 2.3. If B is a Banach space of class H, and the vector space
FB* has a set of uniqueness of special form, then B is singly generated.
Moreover, for every N-function M, one can choose the generator to be an
element of H2, �(R), which is the restriction to R of a function in EM(C).

Proof. Let S be a set of uniqueness of special form for FB*, assume
that M is an N-function, and denote by K its complementary function
defined as usual (cf. [17, Ch. I]) by

K(t)=sup
s�0

[st&M(s)], t # [0, �),

and consider the function w on R defined by

w(t)=exp(K( |t| )), t # R.

Let h be a measurable function on R such that

h(t){0, \t # S,

and

hw/S # L2(R).

Consider the function f =h/S , and set .= f� . We claim that . is a gener-
ator of B, which has all the required properties.

First observe that since K is also an N-function [17, Ch. I, Sect. 2], we
have that

lim
t � �

K(t)
t

=�, (V)

and therefore f is in L2(R, (1+x2) j dx) for every positive integer j, and this
implies that the function . is in H2, �(R). To show that it is a generator
of B, we apply Proposition 2.2.

Assume that v is in B* and P(.̂~ v̂)=0. Noting that .̂~ =2?f (by the inver-
sion theorem for the Fourier transform on L2(R)), we obtain that

2? :
�

j=&�

f2?j v̂2?j=P(.̂~ v̂)=0,

and therefore, since S is of special form, and

f2?j (x)=/S(x&2?j) h(x&2?j), x # R, j # Z,
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we get that all the terms in this sum vanish, hence in particular

v̂h/S=0.

Thus remembering that h{0 on S and that S is a set of uniqueness for
FB*, we conclude that v̂=0, and consequently also v=0. Thus, by
Proposition 2.2, . is a generator for B.

To prove the remaining assertion, observe that the fact that S has finite
measure implies that fw is in L1(R), and therefore using again condition
(V), we see that the function F on C defined by

F(z)=|
�

&�
f (t) e&izt dt, z # C,

is entire. Using Young's inequality [17, p. 12], we obtain that

|F(z)|�& fw&L1(R ) exp(M( |z| )), \z # C.

This shows that the function F is in EM(C), and since its restriction to R
is ., the proof is complete. K

Next, we show that the hypothesis of Theorem 2.3 also implies that the
generator can be chosen so that its non-negative integer translates are
already complete.

Theorem 2.4. The function . in Theorem 2.3, can be chosen so that its
non-negative integer translates [.n , n=0, 1, . . .] are already complete in B.

Proof. We keep all the notations in the proof of Theorem 2.3 and
impose on the function h the additional condition

|
S

log |h(t)| dt=&�.

We claim that this implies that the non-negative integer translates of . are
complete in B. To show this, let v # B*, consider the function

g=P(v̂h/S),

and assume that

cn(g)=0, n=0, 1, . . ..

We shall show that this assumption implies that g=0, and this will imply
the assertion by the proofs of Proposition 2.2 and Theorem 2.3.
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It follows from the assumption above that the function g� (the complex
conjugate of g) belongs to the Hardy space H 1(T), and therefore by a
classical theorem of F. Riesz (see [16, p. 90]), the desired conclusion will
follow if we show that

log | g| � L1(T).

To this end, consider the sets

Sn=(S+2?n) & [&?, ?], n # Z,

and

A=[&?, ?]>\ .
n # Z

Sn+ .

Since S is of special form, the sets Sn , n # Z, are mutually disjoint; thus
using the 2?-periodicity of the function g, we obtain that

|
?

?
log | g(t)| dt=|

A
log | g(t)| dt+ :

�

n=&�
|

Sn

log | g(t)| dt

=|
A

log | g(t)| dt+|
S

log | g(t)| dt.

Therefore, observing that g=hv̂ on S, we get that

|
?

&?
log | g(t)| dt�|

?

&?
| g(t)| dt+|

S
|v̂(t)| dt+|

S
log |h(t)| dt=&�.

The last equality follows from the assumption on h, since g is in L1(T), v̂
is locally integrable, and S has finite measure. This concludes the proof. K

Remarks. 1. The preceding proof shows that if |S|<2?, then the con-
clusion of the theorem follows without any additional assumption on h.
Indeed, in this case, |A|>0, and since it is easily seen that g=0 on A, we
obtain that log | g| is not in L1(T).

2. The proof of the theorem also shows that if S is a set of unique-
ness of special form for FB*, then the set E=A _ S also has these proper-
ties (since E=�n # Z(S*n&2?n), where S*0=S0 _ A, and S*n=Sn for n{0),
and |E|=2?.

We shall prove in the next section that if B is one of the Banach spaces
listed in the statement of Theorem 2.1, then there exists a set of uniqueness
of special form S for FB*, such that the sequence

|S & [2?n, 2?(n+1)]|, n # Z,
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tends to zero arbitrary fast as |n| � �. We show that this fact implies that
B has a generator which satisfies all the conditions of Theorem 2.3 and, in
addition, its translates form an orthonormal system in L2(R).

Theorem 2.5. Assume that B is a Banach space of class H and that for
every sequence of positive numbers [cn]n # N , there exists a set of uniqueness
of special form S for FB*, such that

|S & [2?n, 2?(n+1)]|�c |n| , for |n|�1, n # Z.

Then one can choose the function . in Theorem 2.3, so that it satisfies all the
conditions listed there and, in addition, its integer translates form an
orthonormal system in L2(R).

Proof. The hypothesis above implies that for every continuous function
w on R, there exists a set of uniqueness of special form S for FB*, such
that

w/S # L2(R).

Examining the proof of Theorem 2.3, we see that this implies that all its
conclusions can be fulfilled by choosing the function . as (2?)&1 /̂S , for an
appropriate choice of S. By the second remark following the proof of
Theorem 2.4, we may also assume that |S|=2?. Thus noting that .̂=/~ S ,
we get from the observation following Definition 2 that

P( |.̂| 2)=1.

It is known (cf. [11] or [19, Ch. II]), and follows from the Poisson sum-
mation formula, that this condition is equivalent to the orthonormality of
the integer translates of . in L2(R), and the proof is complete. K

We now turn to the construction of a generator whose integer translates
form a minimal system. We begin with some notations and preliminary
observations.

In what follows we shall denote for every real number s, by Ts the trans-
lation operator acting on functions f on R by

Ts f = fs .

We denote by S the Schwartz space of rapidly decreasing C� functions on
R and by S$ its dual space, that is, the space tempered distributions on R.
We recall that for a real number s, the translate by s of a tempered distri-
bution v, is the tempered distribution vs defined by

(u, vs)=(T&su, v) , u # S.
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We shall denote the transformation on S$,

v � vs , v # S$,

also by Ts .
As observed before, if B is a Banach space of class H, then B*/S$.

Therefore, if B is mapped continuously into itself by the transformations
Tn , n # Z, the same is true for B*, since the adjoint of the operator Tn on
B is the operator T&n on B*. We shall use these observations in the proof
below.

Theorem 2.6. Assume that B is a Banach space of class H that satisfies
the hypothesis of Theorem 2.5 and is mapped continuously into itself by the
transformations Tn , n # Z. If B* contains an element � such that �� is a con-
tinuous function on R which is nowhere zero, then B has a generator that
satisfies all the conditions stated in Theorem 2.1, and in addition, its integer
translates form a minimal system.

Proof. Let � be an element of B* with the properties described above,
and consider the function

h=(2?�� )&1.

Then h is a continuous function on R, and therefore since B satisfies the
hypothesis of Theorem 2.5, we get as in its proof that for every continuous
function w on R, there exists a set of uniqueness of special form S for FB*,
of measure 2?, such that

hw/S # L2(R).

Hence by the arguments in the proof of Theorem 2.3, we obtain that with

an appropriate choice of S, the function .=h/S@ will satisfy all the conclu-
sions of that theorem.

We shall now show that [.n , n # Z] is a minimal system. For this, we
have to prove that this sequence has a biorthogonal sequence in B*. We
claim that the sequence [�n , n # Z] of integer translates of � has this
property. Indeed, it follows from the definition of . and the Fourier inver-
sion formula that

.̂~ �� =/S

and therefore for all j and k in Z,

(.j , �k)=
1

2? |
�

&�
ei( j&k) t.̂(&t) �� (t)=cj&k(P/S)=$j, k .
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The last equality follows from the fact that the assumption that |S|=2?
implies that

P/S=1.

This completes the proof. K

Remarks. 1. As already observed before, all the Banach spaces listed
in the statement of Theorem 2.1 satisfy the hypothesis of Theorem 2.5.
Since their dual spaces include the space S, they also satisfy the hypothesis
of Theorem 2.6 (for example with �(x)=e&x2

) and therefore also its con-
clusion.

2. Each of the Banach spaces C k
0(R), k=0, 1, ..., and H p, k(R), 2<

p<�, k=1, 2, ..., has a generator which satisfies conditions 2 and 3 of
Theorem 2.1 simultaneously. This follows from the fact that the evaluation
functional

$0 : f � f (0)

belongs to their duals. (This is clear for the first class of spaces, and for the
second one, it follows from the proof of the Sobolev embedding theorem.)
Therefore since $� 0=1, the hypothesis of Theorem 2.6 is satisfied with
�=$0 . Thus from the proof of that theorem we obtain that for these
spaces, one can choose the function . to be (2?)&1 /̂S , for an appropriate
choice of S, and consequently by the proof of Theorem 2.5, its integer
translates will also from an orthonormal system in L2(R).

3. Conditions 1 and 3 in Theorem 2.1 cannot be satisfied simulta-
neously. In fact, if B is any Banach space of tempered distributions on R,
which is mapped continuously into itself by the transformations Tn , n # Z,
and u is an element of B such that the sequence [un , n=0, 1, . . .] is com-
plete, then it is not minimal (hence the same is true also for the sequence
[un , n # Z]). This follows from the fact that if this sequence is complete,
then its closed linear span contains in particular the element u&1 , and
therefore since

T1un=un+1 , \n # Z,

the element u=u0 is contained in the closed linear span of the sequence
[un , n # N].

In concluding this section it is worth nothing that while the existence of
singly generated spaces among the classical Banach spaces of functions on
R is rather exotic, if one considers all translates, and not just integer ones,
this is a common fact and holds for most of the classical spaces, in par-
ticular for the spaces L p(R), 1�p<�, and the corresponding Sobolev
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spaces. In fact, every Banach space B of tempered distributions on R which
contains the Fre� chet�Schwartz space S, and the imbedding is dense and
continuous, contains a function . such that the translates [.t , t # R] are
complete. Moreover, every function in . whose Fourier transform has no
zeros (for example, .(x)=e&x2

) has this property. This can be seen as
follows. If . is a function in S such that .̂ has no zeros, then it follows
from the results in [24, Ch. VII, Sect. 10] that the only element v in S$
such that

. V v=0

is the zero element. Hence by the Hahn�Banach theorem, the linear span
of the set [.t , t # R] is dense in the Fre� chet space S, and since this space
is continuously and densely imbedded in B, it is also dense in B.

However, not every separable translation invariant Banach space of
functions on R is the closed span of translates of a single function. As
shown in [1], there exist closed translation invariant subspaces of L1(R),
which are not even the closed span of translates of finitely many functions.

3. SETS OF UNIQUENESS

In view of the results of the preceding section, Theorem 2.1 will be
proved if we show that if B is one of the Banach spaces listed in its state-
ment, then the vector space FB* has a set of uniqueness of special form,
which satisfies the hypothesis of Theorem 2.5. This section is devoted to the
proof of this fact. We begin with some notations.

For every real number t and every function u in S, we shall denote by
Mt and Cu the operators on S$ of multiplication by the function

x � eitx, x # R,

and convolution by the function u, respectively.
It is clear that the vector space S$ is invariant under the operators Mt ,

t # R, and it is well known (cf. [24, p. 246]) that it is also invariant under
the convolution operators Cu , u # S.

We denote as usual by L1
loc(R) the vector space of locally integrable func-

tions on R. This is a Fre� chet space, with respect to the sequence of semi-
norms [ pn]n # N defined by

pn( f )=|
n

&n
| f (t)| dt, f # L1

loc(R).

Definition. A vector space X, which is included in S$, will be called
admissible if it satisfies the following conditions:
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(1) FX/L1
loc(R).

(2) X is invariant under the operators Mt , t # R.

(3) X is invariant under the operators Cu , u # S.

Note that if X is an admissible vector space, then the vector space FX
is translation invariant by condition 2 and is invariant under multiplication
by functions in S by condition 3.

If X is a vector space included in S$ and { is a positive number, we shall
denote by X{ , the vector space of all elements in X whose Fourier trans-
forms are supported by the interval [&{, {].

In view of the Paley�Wiener�Schwartz theorem, X{ consists of all
elements in X, which are the restriction to R of an entire function of
exponential type {. If X is a Banach space which is continuously imbedded
in S$ (with respect to the |* topology of that space), then it is easily
verified that for every {>0, the subspace X{ is closed, and hence is also a
Banach space.

The relevance of these notions to our objective comes from the following.

Proposition 3.1. If X is an admissible vector space and [Sn]n # Z is a
sequence of mutually disjoint measurable subsets of [&?, ?], which are sets
of uniqueness for the vector space F (X?), then the set

S= .
n # Z

(Sn&2?n)

is a set of uniqueness of special form for the vector space FX.

Proof. It is clear that S is of special form. To show that it is a set of
uniqueness for FX, assume that g is a function in that space which
vanishes on S. Then for every function u in S with support in [&?, ?] and
every integer n, the function ug2?n is in F (X?) and vanishes on Sn , and
since this is a set of uniqueness for F(X?), we get that

ug2?n=0, \n # Z.

Since u is an arbitrary function in S with support in [&?, ?], this implies
that g2?n vanishes on the interval [&?, ?], for every integer n, and there-
fore g=0. This completes the proof. K

Before applying the proposition to the Banach spaces listed in the state-
ment of our main theorem, we make some observations.

Assume that B is a Banach space of class H which is included in S$ and
is mapped continuously into itself by the operators Mt and Cu , for every
t # R and u # S. Then the dual space B* is admissible. Condition 1 holds,
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since as observed before, B* is always included in S$, and FB* is included
in L1

loc(R). Conditions 2 and 3 hold since the adjoints of the operators Mt

and Cu on B are the operators Mt and Cu~ on B*.
It follows from these observations that the dual space of each of the

Banach spaces described in Theorem 2.1 is admissible. It is clear that all
these spaces are included in S$ and are mapped continuously into them-
selves by the operators Mt , t # R, and it is well known that the spaces
Ck

0(R) and H p, k(R) are also mapped continuously into themselves by the
operators Cu , u # S.

That the same is true for the spaces L2(R, \(x) dx), where \ is a tempered
weight function, follows from [14, Th. 2.2.4], since in the notation there,
FL2(R, \(x) dx)=B2, - \ .

Thus by the observation in the beginning of this section and Proposition
3.1, Theorem 2.1 will follow from:

Theorem 3.2. If B is one of the Banach spaces described in the state-
ment of Theorem 2.1, then for every sequence of positive numbers [an]n # N ,
there exists a sequence [En]n # N of mutually disjoint measurable subsets of
[&?, ?], which are sets of uniqueness for the vector space F(B*?), and

|En |�an , \n # N.

We begin with the proof for the spaces C k
0(R), k=0, 1, . . .. The dual

space of C0(R) is M(R), the space of all bounded complex Borel measures
on R, and for k=1, 2, ..., the dual space of C k

0(R) is the vector space
M&k(R), which consists of all linear combinations of (distributional)
derivatives of order at most k, of elements in M(R). Since the elements of
FM(R) are continuous functions on R, the same is true for the elements
of FM&k(R), k=1, 2, . . .. Therefore every measurable subset of [&?, ?]
which has intersection of positive measure with every open interval
included in [&?, ?] is a set of uniqueness for each of the vector spaces
F(M(R)?) and F(M&k(R)?), k=1, 2, . . .. Thus the claim of Theorem 2.1
for the spaces C k

0(R), k=0, 1, ..., is a consequence of the following:

Proposition 3.3. For every sequence of positive numbers [an]n # N , there
exists a sequence [En]n # N of mutually disjoint measurable subsets of
[&?, ?], such that each of them has intersection of positive measure with
every open interval included in [&?, ?], and

|En |�an , \n # N.

This result is known and elementary. It also follows from Theorem 3.6
to be proved in the sequel (see the remark at the end of this section).
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However, it seems to be of interest to have a direct proof that is inde-
pendent of the more elaborate arguments involved in the proof of that
theorem. Since we were unable to find such a proof in the literature, we
present one here. It is based on a Baire category argument. One can also
give a direct proof, but it is somewhat longer.

Proof. Let M denote the collection of all measurable subsets of
[&?, ?]. As usual, we identify two elements A of B of M, whose symmetric
difference

A q B=(A"B) _ (B"A)

is a null set. It is well known that with the metric defined by

d(A, B)=|A q B|, A, B # M,

(M, d ) is a complete metric space.
Let M� be the Cartesian product of countably infinite many copies of

M. With the metric

d�(x, y)= :
�

j=1

2& jd(Aj , Bj), x=(Aj) j # N , y=(Bj) j # N # M� ,

(M� , d�) is also a complete metric space.
Let [aj]j # N be a sequence of positive numbers, and consider the subset

of M� ,

W=[(Aj) j # N # M� : |Aj & Ak |=0, for j{k, and |Aj |�aj , \j # N].

It is readily verified that W is closed. Let [In , n # N] be the set of all open
intervals included in [&?, ?], with rational end points. We have to show
that there exists an element (Ej) j # N in W, such that

|Ej & In |>0, \j, n # N.

To this end, consider for every pair of positive integers k and n the subset
of W,

Wk, n=[(Fj) j # N # W : |Fk & In |=0].

These are closed subsets of W, and the claim of the theorem is equivalent
to the assertion that their union is not equal to W. This will follow from
the Baire category theorem, if we show that each of these sets has empty
interior in the relative topology of W. For this, fix a pair of positive
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integers k and n, an element x0=(Cj) j # N in W, a positive number $, and
consider the set

U(x0 , $)=[x # W : d�(x0 , x)<$].

In order to show that this set is not included in Wk, n , we choose an open
interval J/In as follows:

If |Ck |>0, consider a measurable subset C/Ck , such that 0<|C|<$,
and require that |J |�|C|.

If |Ck |=0, require that |J |�min[ak , $]. Let y=(Dj) i # N be the element
of W defined by

Dj=Cj"J, if j{k,

Dk=(Ck"C) _ J, if |Ck |>0,

Dk=J, if |Ck |=0.

It is easy to check that

y # U(x0 , $)"Wk, n .

Thus Wk, n has empty interior, and the proposition is proved. K

The proof of Theorem 3.2 for the other Banach space B listed in the state-
ment of Theorem 2.1 requires a closer examination of the corresponding
spaces B*? .

We observe first that for every 1<p<� and every non-negative integer k,

H p, k(R)*?=Lq(R)? , with q= p( p&1)&1.

To see this, recall (see [25]) that

H p, k(R)*=H q, &k(R), with q= p( p&1)&1,

where H q, &k(R) consists of all linear combinations of distributional deriv-
atives of order at most k, of functions in Lq(R). Since for every u in S and
f in Lq(R),

u V f ( j)=u( j) V f, j=0, 1, ...,

and Lq(R) is invariant under the convolution operators Cu , u # S, we see
that these operators map the vector space Hq, &k(R) into Lq(R). Therefore,
since for every g in S such that ĝ=1 on [&2?, 2?],

g V v=v, \v # Hq, &k(R)?
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(see [24, Ch. V, Th. 2, and Ch. VI, Sect. 10]), we get that

Hq, &k(R)? /Lq(R)? .

Since the inclusion in the other direction is clear, the equality is established.
Consequently, it remains to prove Theorem 3.2 for the spaces L p(R), 2<

p<�, and L2(R, \(x) dx), where \ is a tempered weight function in C0(R).
For this, we require the following result, which is an extension of a result
of Po� lya and Plancherel [22, p. 126] (see also [5, Th. 6.7.15], and [9]).

Theorem 3.4. If 1�q<�, and # is a tempered weight function on R,
then there exists a positive constant c (which depends only on q on #) such
that

:
�

n=&�

| f (n)|q #(n)�c |
�

&�
| f (x)|q #(x) dx, \f # Lq(R, #(x) dx)? .

Proof. Let g be a function in S such that ĝ=1 on [&2?, 2?], then

f = f V g, \f # Lq(R, #(x) dx)? ,

that is,

f (x)=|
�

&�
f ( y) g(x& y) dy, x # R, f # Lq(R, #(x) dx)? .

Consider the function ; on R defined by

;(x)=(#(x))1�q, x # R.

Since # is a tempered weight function, the same is true for ;, hence there
exist positive numbers c1 and r such that

;(x)�c1;( y)(1+|x& y| )r, x, y # R.

Since g is in S, there exists a constant c2>0 such that

| g(x)|�c2(2+|x| )&r&2, x # R,

and therefore, we obtain from the formula above that there exists a con-
stant c3>0 such that for every function f in Lq(R, #(x) dx)? ,

| f (x) ;(x)|�c3 |
�

&�
| f ( y) ;( y)| (2+|x& y| )&2 dy, x # R.
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Thus, denoting by h the function on R defined by

h(x)=(1+|x| )&2, x # R,

and using the fact that

(2+|x| )&2�h(x+t), x # R, 0�t�1,

we get that for every such function f,

| f (x) ;(x)|�c3 | f;| V h(x+t), x # R, 0�t�1,

and therefore

:
�

n=&�

| f (n)|q #(n)�cq
3 :

�

n=&�
|

1

0
[ | f;| V h(n+t)]q dt

=cq
3 & | f;| V h&q

Lq(R)�cq
3 &h&q

L1(R) & f;&q
Lq(R) .

The last inequality follows from Young's inequality for convolutions. This
completes the proof. K

Remarks. 1. For ##1 this result is due to Po� lya and Plancherel [22].
Our proof is different from and considerably shorter than theirs. For our
purpose, the general case is needed only for q=2, and the case ##1 only
for 2<q<�. We also note that by the proof above, the result remains
true if ? is replaced by any positive number { (the constant c will then
depend also on {). This is also the case in [22], where the result is actually
stated for general {.

2. It is also proved in [22] that for the spaces Lq(R)? , 1<q<�,
there is also a corresponding inequality in the other direction, namely,
there exists a positive constant b (which depends only on q) such that for
every function f in Lq(R)? ,

|
�

&�
| f (x)| q dx�b :

�

n=&�

| f (n)|q.

In order to apply the conclusion of Theorem 3.4 to the proof of the
remaining part of Theorem 3.2, we have to introduce several Banach spaces
of functions on T. We observe first that, if 1<q<2, then by the Hausdorff�
Young theorem, FLq(R) is included in L p(R), with p=q(q&1)&1, and
therefore the vector space F (Lq(R)?) is included in L1(R); so it makes
sense to consider the 2?-periodizations of its elements. The same is true for
the spaces L2(R, #(x) dx), where # is a continuous function on R which is
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bounded below by a positive constant, since these spaces are included in
L2(R). We use these facts below.

For 1<q<2, we shall denote by Bq(T) the vector space of all 2?-
periodizations of functions in F (Lq(R)?). This is a Banach space with
respect to the norm

&Pf� &Bq(T )=& f &Lq(R ) , f # L1(R)? .

For a tempered weight function # on R such that

inf
x # R

#(x)>0,

we shall denote by B2(T, #) the vector space of all 2?-periodizations of
functions in FL2(R, #(x) dx)? . This is also a Banach space with norm
defined by

&Pf� &B2(T , #)=& f &L2(R , #(x) dx) , f # L2(R, #(x) dx)? .

For 1<q<2, we denote by Aq(T) the Banach space of all functions g in
L1(T), for which the norm

&g&Aq(T )=\ :
�

n=&�

|cn(g)| q+
1�q

is finite. Finally, for a sequence of positive numbers |=[|(n)]n # Z such
that

inf
n # Z

|(n)>0,

we shall denote by A2(T, |) the Banach space of all functions g in L2(T),
for which the norm

&g&A2(T , |)=\ :
�

n=&�

|cn(g)|2 |(n)+
1�2

is finite.
Observe that if v is a tempered distribution such that v̂ is in L1(R), then

v is in C0(R), and

cn(Pv̂)=(2?)&1 v(&n), \n # Z.

Applying this fact to the elements of Lq(R)? and L2(R, #(x) dx)? , with q
and # as above, we see that an immediate consequence of Theorem 3.4 is:
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Corollary 3.5. (a) If 1<q<2, then

Bq(T)/Aq(T).

(b) If # is a tempered weight function on R, which is bounded below by
a positive constant, and |=[|(n)]n # Z is the sequence defined by

|(n)=#(&n), n # Z,

then
B2(T, #)/A2(T, |).

Remark. It follows from the second remark after the proof of Theorem
3.4 that the inclusion in the first part of the corollary is actually an
equality.

It is clear that a measurable subset of [&?, ?] is a set of uniqueness for
the space F (Lq(R?) for some 1<q<2, if and only if it is a set of unique-
ness for the space Bq(T), and the same holds for the spaces F (L2(R,
#(x) dx)? and B2(T, #), where # is a weight function which satisfies the
hypothesis in part (b) of the corollary.

If \ is a tempered weight function in C0(R), then the function #=1�\ is
a tempered weight function, such that

lim
x � \�

#(x)=�,

and

L2(R, \(x) dx)*=L2(R, #(x) dx),

with the duality implemented by the pairing

(u, v) =|
�

&�
u(t) v(t) dt,

where u # L2(R, \(x) dx), and v # L2(R, #(x) dx).
Observe that this pairing is compatible with the pairing described in

Section 2, between a function in H2, k(R) and an element in the dual of a
Banach space of class Hk (see also [14, Th. 2.2.9]).

Since # is a tempered weight function, there exist positive constants c1

and c2 such that

c1#(x)�#(x+1)�c2#(x), x # R,

and therefore by Corollary 3.5 and the preceding observations, the conclu-
sion of Theorem 3.2 for the spaces L p(R), 2<p<�, and L2(R, \(x) dx),
where \ is a tempered weight function in C0(R), will follow from:
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Theorem 3.6. Assume that 1<q<2 and that [|(n)]n # Z is a sequence
of positive numbers such that

lim
n � \�

|(n)=�,

and for some positive constants c1 and c2

c1|(n)�|(n+1)�c2|(n), n # Z.

If Y is one of the Banach spaces Aq(T) or A2(T, |), then for every sequence
of positive numbers [aj]j # N , there exists a sequence [Ej]j # N of mutually
disjoint measurable subsets of [&?, ?], which are sets of uniqueness for Y,
and

|Ej |� |aj |, \j # N.

The existence of sets of uniqueness of arbitrary small measure for the spaces
Aq(T), 1<q<2, was established in 1964, independently, by Y. Katznelson
[15] (see also [16, p. 101] and D. J. Newman [20, Th. 5$]). Extensions
of their result to a more general setting are given in [10], and related
results appear in [21].

Remark. It should be noted here, that in the harmonic analysis
literature (in particular in [15, 20, 10]) a measurable subset E of [&?, ?]
is called a set of uniqueness for Aq(T) if the set [&?, ?]"E is a set of
uniquenesss in our sense.

In order to prove the theorem simultaneously for the spaces Aq(T) and
A2(T, |), it is convenient to introduce a certain class of Banach spaces of
functions on T. We first make an observation.

If Y is a Banach space of functions on T which is included in L2(T), and
the embedding is continuous, then every function f in L2(T) defines a
bounded linear functional on Y, by

g � (g, f ) =
1

2? |
?

&?
g(t) f (t) dt, g # Y.

We shall denote this functional also by f.
In what follows, we shall denote for every subset E of [&?, ?], by E c

the set [&?, ?]"E.

Definition. If Y is a Banach space of functions on T, then we shall say
that it is of class U, if the following conditions hold:
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(a) Y/L2(T), and the embedding is continuous.

(b) For every =>0, there exists a measurable subset Q of [&?, ?]
and a function f in L�(T), such that

|Qc|<=, f =1 on Q, and & f &Y*<=.

(c) If g # Y, then for every n # Z, the function

t � eintg(t), t # T,

is also in Y.

We claim that all the Banach spaces listed in the statement of Theorem
3.6 are of class U. It is clear that they satisfy condition (a) and that Aq(T)
also satisfies condition (c). The second hypothesis on the sequence |=
[|(n)]n # Z implies that the Banach spaces A2(T, |) also satisfy condition
(c). It is proved in [15; 16, Ch. IV, Lemma 2.5], and [20, Lemma 9] that
the Banach spaces Aq(T), 1<q<2, satisfy condition (b). To show that this
condition holds also for the Banach spaces A2(T, |), we need an inter-
mediate result.

In what follows, we shall denote for every function h on T, and every
positive integer n, by h(n } ) the function

t � h(nt), t # T.

Lemma 3.7. Let |=[|(n)]n # Z be a sequence of positive numbers such
that

lim
n � \�

|(n)=�.

Set Y=A2(T, |), and assume that h is a function in L2(T) such that c0(h)=0.
Then

lim
n � �

&h(n } )&Y*=0.

Proof. First observe that if f is in L2(T), then by Parseval's formula

(g, f )= :
�

j=&�

cj (g) c& j ( f ), \g # Y,

and therefore,

& f &2
Y*= :

�

j=&�

|cj ( f )| 2

|(& j)
.
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Hence setting b=infj # Z |( j), and using the assumption that c0(h)=0, we
obtain that for every k and n in N,

&h(n } )&2
Y*� :

1�| j |�k

|cj (h)| 2

|(&nj)
+b&1 :

| j |>k

|cj (h)| 2

and consequently from the assumption that

lim
n � \�

|(n)=�

we get that for every k in N,

lim
n � �

&h(n } )&2
Y*�b&1 :

| j |>k

|cj (h)| 2.

Since h # L2(T), this implies the desired conclusion. K

It is now easy to show that the space Y=A2(T, |) satisfies condition
(b). To this end, assume that =>0, and let D be a measurable subset of
[&?, ?], such that 0<|Dc|<=. Set a=|D| |Dc| &1, and consider the func-
tion h in L2(T) such that

h=/D&a/Dc , on [&?, ?].

Then c0(h)=0, and therefore by Lemma 3.7, there exists a positive integer
n such that

&h(n } )&Y*<=.

Observing that the measure of the set

Q=[x # [&?, ?]: h(nx)=1]

is |D|, we see that condition (b) is satisfied with this set and f =h(n } ).
Thus it remains to prove

Theorem 3.8. If Y is a Banach space of class U, then for every sequence
of positive numbers [aj]j # N , there exists sequence [Ej]j # N of mutually dis-
joint measurable subsets of [&?, ?], which are sets of uniqueness for Y, and

|Ej |�aj , \j # N.

Proof. Let [aj]j # N be a sequence of positive numbers. Using condition
(b), we define by induction, a sequence [=n]n # N of positive numbers, a
sequence [Qn]n # N of measurable subsets of [&?, ?], and a sequence

316 ATZMON AND OLEVSKII8



File: 640J 299027 . By:BV . Date:14:11:96 . Time:14:25 LOP8M. V8.0. Page 01:01
Codes: 2310 Signs: 1126 . Length: 45 pic 0 pts, 190 mm

[ fn]n # N of functions in L�(T), such that for every n # N, the following
conditions hold:

|Qc
n |<=, fn=1 on Qn , & fn&Y*<=n . (1)

:
�

j=n+1

=j<=2
n(1+& fn&�)&2, and =n�

aj

n(n+1)
,

for 1� j�n. (2)

Let [:(n)]n # N be a sequence of positive integers such that

:(n)�n, \n # N,

and assume that every j in N appears in this sequence infinitely many
times. (For example, we may define :(n)=n&2k&1+1, for 2k&1�n<2k,
k # N.)

We define now, also by induction, a sequence [E (n)
j , 1� j�n, n # N] of

measurable subsets of [&?, ?].
Set E (1)

1 =<, and assume that for some n # N, we have already defined
measurable subsets [E (n)

j , 1� j�n] of [&?, ?], which satisfy the condi-
tions

|E (n)
j |�(1&1�n) aj , 1� j�n.

Define the sets [E (n+1)
j , 1� j�n+1] as

E (n+1)
j =E (n)

j & Qn , if j�n and j{:(n),

E (n+1)
j =E (n)

j _ Qc
n , if j=:(n),

E (n+1)
n+1 =<.

It is easily verified that this definition yields a sequence of subsets

[E (n)
j , 1� j�n, n # N]

of [&?, ?], such that for every n in N, the following conditions hold
(below we use the notations introduced in the proof of Proposition 3.3):

The set E (n)
j , 1� j�n, are mutually disjoint, and

|E (n)
j |�(1&1�n) aj , 1� j�n. (3)

Qc
n/E (n+1)

j , for j=:(n). (4)

d(E (n+1)
j , E (n)

j )<=n , 1� j�n. (5)
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It follows from (5) and (2) that if m>n+1,

d(E (m)
j , E (n+1)

j )<=2
n(1+& fn &�)&2, for 1� j�n.

Hence for every fixed j # N, the sequence [E (n)
j , n= j, j+1, . . .] is a Cauchy

sequence in M, and therefore, it converges as n � �, to an element Ej in
M, which satisfies the condition

d(Ej , E (n+1)
j )�=2

n(1+& fn&�)&2, for n� j.

This implies by (4) that

|E c
j & Qc

n |�=2
n(1+& fn&�)&2, for j=:(n). (6)

We claim that the sequence [Ej]j # N has all the required properties.
First, it follows from (3) that

|Ej & Ek |=0, for j{k,

and

|Ej |�aj , \j # N.

To show that the members of this sequence are sets of uniqueness for Y,
fix j in N, and assume that g is a function in Y that vanishes on Ej . We
prove that g=0 by showing that

cn(g)=0, \n # Z.

Since by condition (c) we may replace for every n # Z the function g by the
function

t � eintg(t), t # T,

it suffices to prove that

c0(g)=0.

To show this, fix n # N, and set K=E c
j & Qc

n . Since by (1) and the assump-
tion on g,

g(1& fn)=0, on Ej _ Qn ,

we obtain that

c0( g)=( g, fn)+
1

2? |
K

g(t)(1& fn(t)) dt.

Thus, denoting by & &2 the norm in L2(T), we get from (1) and the
Schwarz inequality that

|c0(g)|�&g&Y =n+&g&2 (1+& fn &�) |K| 1�2.
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Therefore, if :(n)= j, we obtain from (6) that

|c0(g)|�(&g&Y+&g&2) =n .

Since :(n)= j for infinitely many n in N, and =n � 0, this implies that
c0(g)=0, and the theorem is proved. K

Remark. As mentioned after the statement of Proposition 3.3, Theorem
3.6 implies the proposition. This follows from the fact that the 2?-
periodization of every C� function on R which is supported on an open
interval included in [&?, ?] belongs to each of the spaces Aq(T),
1<q<2, and therefore every measurable subset of [&?, ?] which is a set
of uniqueness for one of these spaces has intersection of positive measure
with every such interval.

4. RESULTS IN THE OPPOSITE DIRECTION

In this section, we prove some results in the opposite direction and
present some necessary conditions for the completeness of integer trans-
lates. We first show that a function whose integer translates are complete
in one of the spaces C k

0(R) or H p, k(R), 2<p<�, k=0, 1, ..., must have
rather slow decay at infinity. As we have seen, such a function can be
chosen in L2(R), but it turns out that it cannot be chosen in L1(R). We
show that this is true for a more general class of spaces.

Following [16, Ch. VI], we shall call a Banach space X of locally
integrable functions on R homogeneous if it is translation invariant, the
translation operators Ts are isometries on X, and for every g # X, the
mapping

s � Ts g, s # R,

from R into X is continuous.
We note that if X is such a space, then it is invariant under convolutions

with elements of L1(R). More precisely, if g # X and f # L1(R), their con-
volution f V g (which can be defined as the Bochner integral � R Ts gf (s) ds,
of the function s � Ts g, with respect to the measure f (s) ds) is in X, and

& f V g&X�& f &L1( R ) &g&X .

In what follows, we denote (in accordance with the notation introduced in
Section 3) for every real number t, by Mt the transformation which
associates with a function g on R the function

x � eitxg(x), x # R.
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Theorem 4.1. Let X be a homogeneous Banach space of functions on R,
which is not the zero space, and assume that for every t # R, the transforma-
tion Mt maps X continuously into itself. Then the integer translates of a func-
tion in X & L1(R) are not complete in X.

Proof. Assume that . is in X & L1(R). We shall show that the translates
[.n , n # Z] are not complete in X. For this, consider the linear transforma-
tion L : X � X defined by

Lg=. V M2? g&(M2?.) V g, g # X.

By the assumptions on X and the preceding observation, L is continuous.
It is easily verified that

L(.n)=0, \n # Z.

Hence the assertion will follow if we show that if .{0 then L{0.
Assume that L=0, then in particular

L(Mt.)=0, \t # R,

and applying the Fourier transform we get that

.̂(x) .̂(x&2?&t)&.̂(x&t) .̂(x&2?)=0, \x, t # R,

and this means that there exists a constant c such that

.̂(x&2?)=c.̂(x), \x # R.

Since .̂ # C0(R) (by the assumption that . # L1(R)) this implies that .̂=0,
and therefore .=0. This completes the proof. K

Note that the theorem applies in particular to the spaces C k
0(R) and

H p, k(R), 1�p<�, k=0, 1, ..., since they satisfy its hypotheses.

Remarks. 1. The hypothesis that X is invariant under the operator Mt

cannot be omitted from the statement of the theorem. For example, if X is
the Paley�Wiener space L2(R)? of all functions in L2(R) whose Fourier
transform is supported on [&?, ?], then all the other hypotheses of the
theorem are satisfied, but X is the closed span of integer translates of any
of its functions whose Fourier transform is different from zero a.e. on
[&?, ?] (cf. [12, Th. 1]). So in this case, there exists even a function in
S whose integer translates are complete in X.

2. For the spaces L p(R), 2<p<�, one can prove a stronger result,
namely, if 1�s�p( p&1)&1, then the integer translates of a function in
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Ls(R) & L p(R) are not complete in L p(R). This can be proved by an argu-
ment which is similar to the one in the proof above, using the fact that if
1�r=1�s+1�p&1, then by Young's inequality for convolutions,

& f V g&Lr(R )�& f &Ls( R ) &g&Lp(R ) ,

for every f in Ls(R) and g in L p(R).

3. By similar arguments, one can prove that if \ is a tempered weight
function on R such that for some r�0,

\(x+ y)�\( y)(1+|x| )r, x, y # R,

then the integer translates of a function in L2(R, \(x) dx) & L1(R, (1+
|x| )r dx) are not complete in L2(R, \(x) dx).

In view of Theorem 2.1, one may ask for the characterization of functions
in C0(R) and L p(R), 2<p<�, whose integer translates are complete. This
is a hard problem and seems to be far out of scope. We mention in this
connection that for p{2, there is no known characterization of functions
in L p(R), 1<p<�, whose translates are complete. A simple necessary
condition is that the support of the Fourier transform of such a function
is the whole real line. In fact, it is easy to see that the same is true for every
translation invariant Banach space X of tempered distribution which is
continuously embedded in S$ (with respect to the |*-topology), and the
union of the supports of the elements in FX is R. Hence this is in par-
ticular also a necessary condition for completeness of integer translates of
an element in such a space.

It follows from these observations and the Paley�Wiener�Schwartz
theorem that the function . in Theorem 2.1 cannot be chosen to be the
restriction to R of an entire function of finite exponential type.

We show next that each of the spaces H p, k(R), 1�p�2, k=0, 1, ..., is
not the closed span of integer translates of finitely many elements. This is
a particular case of:

Theorem 4.2. Let X be a translation invariant Banach space of tempered
distributions on R, which is mapped continuously by the Fourier transform
into the Fre� chet space L1

loc(R), and assume that X contains an element whose
Fourier transform is different from zero a.e. Then X is not the closed span
of integer translates of finitely many elements.

Before giving the proof, we make some observations. We note first that
the spaces H p, k(R), 1�p�2, k=0, 1, ..., satisfy the hypotheses of the
theorem. This is clear for the first and the third hypothesis, and the second
follows from the Hausdorff�Young theorem.
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The assertion of the theorem for the space L2(R) is known and can be
deduced from the multiplicity theory for unitary operators on Hilbert space
and also from the results in [6].

It is easily verified that the heuristic argument described in the first
paragraph of the introduction is actually correct for the spaces which
satisfy the hypotheses of the theorem, and thus provides a proof of the fact
that such a space is not singly generated. The general case can be deduced
from Proposition 2.1 in [3]. For the sake of completeness we adapt it to
our setting, and present a direct proof.

Proof of Theorem 4.2. Let J be a finite subst of X, and denote by X0

the linear span (in the algebraic sense) of integer translates of all elements
of J. We claim that X� 0 {X. Let m denote the number of elements of J, and
set n=m+1. Denote by A the algebra of all measurable functions on R,
and consider the n-linear mapping 9 : Xn � A, defined by

9(v1, v2, ..., vn)=det(T2?(k&1) v̂ j)n
j, k=1 ,

where (v1, v2, ..., vn) is an n-tuple in Xn. The claim will be proved by
showing that 9 annihilates X� n

0 and 9{0. We first show that 9 annihilates
Xn

0 . By linearity, it suffices to prove that 9 annihilates every n-tuple which
consists of integer translates of elements in J. Assume that (w1, w2, ..., wn)
is such an n-tuple. Since J contains m elements, and n=m+1, there exist
two members of this n-tuple, which are integer translates of the same
element, say v, of J. By changing the order, we may assume that these are
the first and second members; that is, we may assume that

(w1, w2, ..., wn)=(Tpv, Tqv, ..., wn)

for some integers p and q. But this implies by the definition of 9 that

9(w1, w2, ..., wn)=M&p&q 9(v, v, ..., wn)=0.

Thus 9 annihilates X n
0 . Since the Fourier transform maps X continuously

into the Fre� chet space L1
loc(R), every convergent sequence in X has a

subsequence which is mapped by the Fourier transform into a sequence of
measurable functions which converges a.e. on R, and therefore 9 also
annihilates X� n

0 .
It remains to show that 9{0; To this end, assume that u is an element

in X such that û{0, a.e., and consider the n-tuple (u1, u2, ..., un) in Xn

defined by

u j=Tj�2?u, j=1, 2, ..., n.
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We obtain from the definition of 9 and the formula for Vandermonde
determinants that

9(u1, u2, ..., un)=ah,

where

a= `
1� j<k<n

(eik&eij ),

and h is the function on R defined by

h(x)=exp _&
i

4?
n(n+1) x& } `

n&1

j=0

û(x&2?j), x # R.

The assumption on u implies that h{0 a.e., thus 9{0, and the theorem
is proved. K

We conclude this section with some observations about Schauder bases.
Since each of the Banach spaces listed in the statement of Theorem 2.1
contains a function whose integer translates are complete and also form a
minimal system, it is natural to ask whether they also possess a Schauder
basis which consists of integer translates of a single function. Unfor-
tunately, this is not the case. We consider this problem first in a more
general setting.

In what follows, we assume that X is a translation invariant Banach
space of tempered distributions on R, on which the translation operators
Ts , s # R, are continuous, that X includes the Schwartz space S, and that
the embedding is continuous and dense. Then the adjoint of this embedding
embeds the dual space X* continuously into S$ (with respect to the w*
topology), and the adjoint of the operator Ts on X is the operator T&s on
X*. Thus X* is also a translation invariant Banach space of tempered
distributions, and for u # X and v # X*,

(us , vt) =(us&t , v) , \s, t # R.

Asume that u is an element of X, whose integer translates form a minimal
system, and let v be an element of X* such that

(un , v) =$n, 0 , \n # Z.

Then by the preceding observation,

(un , vk) =(un&k , v) =$n, k , \n # Z,

so that [vk , k # Z] is a biorthogonal sequence for [un , n # Z].
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Assume now that the sequence [un , n # Z], ordered properly, is a
Schauder basis for X. Then the biorthogonal sequence [vn , n # Z] is total;
that is, its linear span is w*-dense in X* (cf. [18, Ch. I]).

If B is a Banach space of class H, then we know that the Fourier trans-
form maps B* continuously into the Fre� chet space L1

loc(R). Therefore if B*
contains an element whose Fourier transform is different from zero a.e., we
obtain from Theorem 4.2 that it is not singly generated. Hence if B is
reflexive, it follows from the preceding observations that it does not possess
a Schauder basis which consists of integer translates of a single function.
Consequently, the Banach spaces H p, k(R), 1<p<�, k=0, 1, ..., and L2(R,
\(x) dx) (where \ is a tempered weight function in C0(R)) do not possess
such a basis.

To prove the assertion for the non-reflexive spaces C k
0(R), k=0, 1, ..., we

have to show that their duals do not contain an element such that the
linear span of its integer translates is w*-dense. For M(R), the dual space
of C0(R), this can be proved by an argument that is similar to the one in
the proof of Theorem 4.1. We give a brief outline.

Let + # M(R), and assume that +{0. Consider the linear transformation
L : M(R) � M(R) defined by

L&=+ V M2?&&& V M2? +, & # M(R).

It is easily verified that L is continuous with respect to the w* topology of
M(R), that it annihilates the integer translates of +, and that L{0. This shows
that the linear span of the integer translates of + is not w*-dense in M(R).

For the spaces M&k(R), the dual spaces of C k
0(R), k=1, 2, ..., the asser-

tion is proved in a similar way, by observing that for every 0{u # M &k(R),
the transformation

v � u V M2?v&v V M2? u, v # M&k(R),

maps M&k(R) into M&2k(R), is continuous with respect to the w* topologies
of these spaces, annihilates the integer translates of u, and is not the zero map.

Finally we note that since each of the Banach spaces described in the
statement of Theorem 2.1 has a Schauder basis (cf. [19, Ch. VI]), it follows
from that theorem and the Krein�Milman�Rutman theorem (cf. [18, Propo-
sition 1.a.9]) that each of these spaces also possesses a Schauder basis whose
members are linear combinations of integer translates of a single function.

5. FUNCTION SPACES ON RN AND [0, 1]

All the preceding results can be extended, with essentially the same proofs,
to the multivariate setting. One can also get directly from Theorem 2.1 the
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existence of complete sequences which consist of Zn-translates (or even
Zn

+ -translates) of a single function, in each of the Banach spaces C0(R
n),

Lp(Rn), 2<p<�, and the corresponding Sobolev spaces. This can be
achieved by forming the n-fold tensor product of the corresponding func-
tion . in Theorem 2.1, since each of these Banach spaces is the closed
linear span of tensor products of functions in D(R), and the norm of such
a tensor product is the product of the norms of its factors in the corre-
sponding univariate space.

One can also deduce from Theorem 2.1 the corresponding result for the
spaces L2(Rn, \(x) dx), where \ is a tempered weight function on Rn which
is in C0(Rn), but this requires a preliminary argument, which reduces the
general case to the case where \ is a tensor product of univariate weight
functions of the same type. We omit the details.

Finally, we use Theorem 2.1 to construct certain complete sequences in
some Banach spaces of functions on [0, 1]. In what follows we shall denote
by L the linear transformation which acts on functions f on [0, 1] by

Lf (t)= f (t2), t # [0, 1].

We denote by C0[0, 1] the Banach space of all continuous functions on
[0, 1], which vanish at 0 and 1, equipped with the maximum norm.

Theorem 5.1. Each of the Banach spaces C0[0, 1] and L p[0, 1],
1�p<�, contains a function f such that the sequence iterates [Lnf ,
n=0, ...] is complete.

Proof. Since C0[0, 1] is dense in each of the spaces listed above and
the embedding is continuous, it suffices to prove the theorem for this space.
Consider the function v : R � [0, 1] defined by

v(x)=exp(&2&x), x # R,

and denote by V the linear transformation which associates with a function
g on [0, 1] the function g b v on R. Then V maps the Banach space C0[0, 1]
isometrically onto the Banach space C0(R), and a simple computation
shows that

VLn=Tn V, n=0, 1, ...,

where Tn denotes as before the operator of translation by n. Therefore,
choosing (by Theorem 2.1) a function . in C0(R) whose non-negative
integer translates are complete in this space, and setting f =V&1., we
obtain that the sequence [Lnf , n=0, 1, ...] is complete in C0[0, 1]. K

Remark. Since the function . in the proof above can be chosen by
Theorem 2.1 to be the restriction to R of an entire function, we see that the
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function f above can be chosen to be infinitely differentiable on the open
interval (0, 1). However, it cannot satisfy a Ho� lder condition of any order
at the end points, and more generally, the function g on (0, 1) defined by

g(t)=t&1(1&t)&1 f (t), 0<t<1,

cannot be in L1[0, 1]. This can be seen as follows. The proof of Theorem
5.1 shows that if the sequence [Lnf , n=0, 1, ...] is complete in C0[0, 1],
then the sequence [TnVf , n=0, 1, ...] is complete in C0(R), and therefore,
by Theorem 4.1, Vf cannot be in L1(R). But it is easily verified that if g is
in L1[0, 1], then Vf is in L1(R).

Note added in proof. We are grateful to Professor N. K. Nikolskii, who after reading a
preprint of this paper informed us that the fact that the spaces Lp(R), 2<p<�, and C 0(R)
are singly generated can be also deduced from his results which appear in the book ``Selected
Problems in Weighted Approximation and Spectral Analysis,'' Proceedings of the Steklov
Institute of Mathematics 120 (1974); English translation: Amer. Math. Soc., Providence, RI,
1976. More specifically, this deduction can be made by using Theorem 1, Lemma 6, and
Theorem 6 in Section 3.4 of that book, with X=lp (Z) and c0(Z) and E=Lp [0, 1] and
C[0, 1], respectively. He also informed us that Theorem 5.1 in this paper was also proved in
the Ph.D. thesis of A. K. Kitover in 1973.
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